APPENDIX

In the appendix, we provide details about various aspects of our work, including the prompts used for generating evaluation
functions, details of task descriptions and environment abstractions, example evaluation functions for the general RL tasks,
and details about the pre-training and fine-tuning process in our user study.

TABLE OF CONTENTS

I Prompts Used for Generating Evaluation Functions e 1
o I.1 Initial System Prompt

o 1.2 Initial User Prompt

¢ 1.3 Code Error Feedback Prompt

O T S B Tty o3 w3 o] () 2
o II.1 Description of Tasks Used in Benchmark

IIT Environment ADSIFACTIONttt et e et e e e ettt e 2
« III.1 Example Environment Abstraction for Walker Task

« III.2 Example Environment Abstraction for Button Press Task

IV Example of LLM-based Evaluation FUNCHONSttt e 4
« IV.1 Expert-engineered Reward Function for Walker Task

o IV.2 LLM-based Evaluation Functions for Walker Task

o IV.3 Expert-engineered Reward Function for Button Press Task

e IV.4 LLM-based Evaluation Functions for Button Press Task

V The Feeding Task in the User Studyo i e e 14
o V.1 Pre-trained Robot Policy

o V.2 Fine-tuning Process

APPENDIX I
PROMPTS USED FOR GENERATING EVALUATION FUNCTIONS

In this section, we present the prompts utilized for LLM-based evaluation functions sampling in the PrefCLM. We begin
by initializing the LLM agent with a specific role and job description:

You are an expert evaluator specializing in preference-based reinforcement
learning for robots. Your task is to design a sophisticated Python evaluation
function that accurately scores robot trajectories within a specific
reinforcement learning environment. This function is critical for guiding the
robot’s learning process and optimizing its task performance.

Your evaluation function should:
e Use only the variables available in the robot’s trajectory, which consists
of multiple state-action pairs across different time steps.
e Return a single float value as the overall score, where higher scores
indicate better performance.
e Incorporate two key components:
— Immediate evaluation: Assess individual state-action pairs at each time
Step.
— Holistic evaluation: Analyze patterns and trends across the entire
trajectory.

Next, we provide specific contextual information, including the task description (Appendix II) and environment abstraction
(Appendix III), along with additional requirements for generating evaluation functions:

I need you to generate the evaluation function for the following task: {Task
Description}. The Pythonic class-like environment abstraction is {Environment
Abstraction}.

Proceed as follows:

e Analyze the task requirements and environment step-by-step.
e Develop a function with the signature def evaluate_trajectory(trajectory:
Trajectory) —-> float that returns only the final_ score.
e Include comments in your code to explain your reasoning and design choices.
Additional Requirements:

e The evaluation function must be a standalone function, suitable for
integration into a class in another Python file.

e It must not contain any intra-class calls.

e Provide concrete, well-reasoned initial threshold values and weights. Avoid
placeholders.

Additionally, in practice, although not frequent, sometimes the LLM agent may generate code with errors such as syntax
errors or runtime issues (e.g., shape mismatch). In line with previous works [16], [17], we utilize the traceback message
from code execution to prompt the LLM agent to fix the bug and provide an executable evaluation function if errors occur.
The prompt for handling code errors is shown below:

Executing the evaluation function code you generated bove has the following
error: {traceback_msg}. Please fix the bug and provide a new, evaluation
function.

APPENDIX II
TASK DESCRIPTIONS
Following [16], [17], we use the task descriptions provided by the benchmark environments as the {7ask Description} in
the prompts. These are summarized in Table.l.

TABLE I
DESCRIPTION OF EACH TASK.

Task [Descriptions
Walker Walk Control the Walker robot to walk steadily in the forward direction, maintaining balance and speed.
Cheetah Run Control the Cheetah robot to run swiftly in the forward direction, optimizing for speed and stability.
Quadruped Walk | Control the Quadruped robot to walk in the forward direction, ensuring coordination among all four legs for smooth movement.
Button Press Instruct the robot to press a button located along the y-axis, requiring precise positioning and force application.
Door Unlock Instruct the robot to unlock a door by rotating the lock mechanism counter-clockwise, requiring fine motor skills and dexterity.
Drawer Open Instruct the robot to open a drawer by pulling its handle, requiring a firm grip and controlled pulling force.

APPENDIX III
ENVIRONMENT ABSTRACTION

To effectively generate evaluation functions within a task environment, LLM agents must understand how attributes
of the robot and environment are represented, including the configuration of robots and objects, trajectory information,
and available functions. To this end, following [!7], we employ a compact representation in Pythonic style, which utilizes
Python classes, typing, and comments. This approach offers a higher level of abstraction compared to listing all environment-
specific information in a list or table format, enabling the creation of general, reusable prompts across different environments.
Additionally, Pythonic representation is prevalent in the pre-training data of LLMs, facilitating the LLM’s understanding of
the environment. Example environment abstractions for the Walker and Button Press tasks are provided below.

class WalkerEnv:
physics: Physics
task: PlanarWalker
control_timestep: = 0.025 # Time interval for each control update.
time_limit: = 25 # Maximum duration for each episode in seconds.

def step(self, action: np.ndarray) :

"""Executes one timestep of the environment’s dynamics with the given action and updates
the trajectory."""

pass

def reset (self):
"""Resets the environment to an initial state and returns the first observation."""
pass

def get_trajectory(self) -> Trajectory:
"""Returns the trajectory data collected during an episode, including states, actions, and
observations."""
pass

class Physics:
def torso_upright (self) -> float:
"""Calculates the cosine of the angle between the torso’s z-axis and the vertical,
indicating how upright the torso is."""
pass

def torso_height (self) -> ©1l
"""Returns the vertical position of the torso in meters, which helps monitor the walker’s
balance."""
pass

def horizontal velocity(self) -> float:
"""Measures the horizontal speed of the walker’s center of mass, reflecting movement
efficiency."""
pass

def orientations(self) -> np.ndarray:
"""Returns an array of planar orientations for body segments, aiding in posture analysis.
nnn

pass

def velocity(self) -> np.ndarray:
"""Returns a comprehensive velocity vector for all body parts, including both linear and
angular velocities."""
pass

class PlanarWalker:
trajectory: Trajectory
_move_speed: float # Desired movement speed, varies with the task (’stand’, ’"walk’, ’'run’).

def get_observation(self, physics: Physics) -> collections.OrderedDict:
"""Compiles observational data from physics simulations, crucial for real-time decision-
making."""
pass

def get_state(self, physics: Physics) -> dict:
"""Aggregates current state information from physics, providing a detailed snapshot of
dynamic conditions."""
pass

class Trajectory:
def __init__ (self, max_length=time_limit) :
self.states: deque # queue of states, max length 25
self.actions: deque # queue of actions, max length 25
self.observations: deque # queue of observations, max length 25

def add_step(self, state: dict, action: np.ndarray, observation: np.ndarray) :
Add a step to the trajectory

def _ _len_ (self) -> int:
Return the number of steps in the trajectory

class SawyerButtonPressEnvV2 (gym.Env) :
def _ _init_ (self):
self.robot: Robot # the Sawyer robot in the environment
self.button: RigidObject # the button object in the environment
self.goal_position: np.ndarray[(3,)] # 3D position of the goal (button pressed position)

self.trajectory: Trajectory # stores the trajectory of the episode

def reset (self) -> np.ndarray:
Reset the environment and return initial observation

def step(self, action: np.ndarray) —-> tuple:
Perform one step and return (observation, reward, done, info)

def get_trajectory(self) -> Trajectory:
Return the recorded trajectory

class Robot:
def _ init_ (self):
self.ee_position: np.ndarrayl[(3,)] # 3D position of the end-effector
self.joint_positions: np.ndarray[(7,)] # 7 Jjoint positions of Sawyer robot
self.joint_velocities: np.ndarrayl[(7,)] # 7 joint velocities of Sawyer robot

class RigidObject:
def _ init_ (self):
self.position: np.ndarray[(3,)] # 3D position of the object (button)
self.quaternion: np.ndarrayl[(4,)] # quaternion of the object (button)

class Trajectory:
def __init__ (self, max_length=25):
self.states: deque # queue of states, max length 25
self.actions: deque # queue of actions, max length 25
self.observations: deque # queue of observations, max length 25

def add_step(self, state: dict, action: np.ndarray, observation: np.ndarray) :
Add a step to the trajectory

def __len_ (self) -> int:
Return the number of steps in the trajectory

class State:
def _ _init_ (self):
self.robot: Robot # state of the robot
self.button: RigidObject # state of the button

APPENDIX IV
EXAMPLE OF LLM-BASED EVALUATION FUNCTIONS

In this section, we demonstrate example LLM-based evaluation functions during experiments, especially for the Walker
and Button Press Tasks. Note that all example evaluation functions were sampled from multiple independent calls from the
gpt-4 model. For comparison, we also provide the expert-engineered reward functions for these tasks, which serve as the
evaluation basis of the Scripted Teachers baseline. The expert-tuned reward functions and sample functions are shown below.

def get_reward(self, physics):
"""Returns a reward to the agent."""
standing = rewards.tolerance (physics.torso_height (),

bounds= (_STAND_HEIGHT, float (’inf’)),
margin=_STAND_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
stand_reward = (3+standing + upright) / 4
if self._move_speed == 0:
return stand_reward
else:
move_reward = rewards.tolerance (physics.horizontal_velocity (),
bounds=(self._move_speed, float (’inf’)),

margin=self._move_speed/2,
value_at_margin=0.5,
sigmoid='linear’)

return stand_reward x (5xmove_reward + 1) / 6

####Evalution Function Sample 1####

def evaluate_trajectory(trajectory: Trajectory) —-> float:

def

def

if

gaussian(x, mu, sigma) :
return np.exp(-0.5 * ((x — mu) / sigma) *x 2)

sigmoid(x, k=1):
return 1 / (1 + np.exp(-k * x))

len(trajectory.states) == 25:

a = trajectory.actions[0] is None
if not a:
immediate_scores = []
stability_scores = []
efficiency_scores = []
goal_achievement_scores = []

for i, (state, action) in enumerate (zip(trajectory.states, trajectory.actions)
Immediate evaluation
upright_score = (1 + state[’torso_upright’]) / 2
height_score = gaussian(state[’torso_height’], mu=trajectory.task.

_STAND_HEIGHT, sigma=0.1)
action_magnitude = np.linalg.norm(action)
action_score = gaussian(action_magnitude, mu=0, sigma=0.5)

immediate_score = (
0.4 » upright_score +
0.4 * height_score +
0.2 * action_score

)

immediate_scores.append(immediate_score)

Stability evaluation
if 1 >= 2:

) g

height_changes = [trajectory.states[j+1][’torso_height’] - trajectory.
states[j] ['torso_height’] for j in range(i-2, 1i)]

upright_changes = [trajectory.states[j+1][’torso_upright’] - trajectory.
states[]J] ['torso_upright’] for j in range(i-2, 1)]

height_stability = 1 - abs (height_changes[l] - height_changes[0])

upright_stability = 1 - abs (upright_changes[1l] - upright_changes[0])

stability_scores.append ((height_stability + upright_stability) / 2)

Efficiency evaluation
if 1 >= 1:

velocity_change = state[’horizontal_velocity’] - trajectory.states[i-1][’

horizontal_velocity’]
efficiency_scores.append(gaussian(velocity_change, mu=0, sigma=0.1))

Goal achievement evaluation
target_speed = trajectory.task._move_speed
if target_speed == 0:
stand_score = gaussian(state[’torso_height’], mu=trajectory.task.
_STAND_HEIGHT, sigma=0.1)
upright_score = (1 + state[’torso_upright’]) / 2
goal_achievement_scores.append ((stand_score + upright_score) / 2)
else:
goal_achievement_scores.append (gaussian (state[’horizontal_velocity’],
target_speed, sigma=target_speed / 4))

Holistic evaluation
overall_stability = np.mean(stability_scores)
overall_efficiency = np.mean(efficiency_scores)

goal_progression = np.polyfit (range (len(goal_achievement_scores)),
goal_achievement_scores, 1) [0]

goal_progression_score = sigmoid(goal_progression, k=10)

motion_consistency = 1 - np.std(efficiency_scores)

task_completion = np.mean(goal_achievement_scores[-10:])

holistic_score = (
0.2 » overall_stability +
0.2 » overall_efficiency +

mu=

0.2 x goal_progression_score +

0.2 » motion_consistency +
0.2 x task_completion

)

Combine immediate and holistic scores

final _score = 0.4 x np.mean(immediate_scores) + 0.6 » holistic_score
else:
final_score = 0
else:
final_score = 0

return final_score

####Evalution Function Sample 2####

def evaluate_trajectory(trajectory: Trajectory) -> float:
Wi
Evaluate a given robot trajectory and return an overall score.
Higher scores indicate better performance.

:param trajectory: The Trajectory object containing states, actions, and observations.
:return: A single float value representing the overall score.

Define weight constants

WEIGHT_UPRIGHT = 1.0

WEIGHT_HEIGHT = 0.5

WEIGHT_VELOCITY = 1.0

WEIGHT_ENERGY = 0.2

WEIGHT_STABILITY = 0.8

WEIGHT_PROGRESS = 0.5

Immediate evaluation variables
upright_scores = []
height_scores = []
velocity_scores = []
energy_scores = []

Holistic evaluation variables
total_distance = 0
height_variation = []
upright_variation = []

target_speed = trajectory.task._move_speed

stand_height = _STAND_HEIGHT
max_height_threshold = 0.8 * stand_height # Threshold below which walker is considered
fallen

previous_state = None

if len(trajectory.states) == 25 :
a = trajectory.actions[0] == None
if type(a) != bool:

for step in range (len(trajectory)):
state = trajectory.states[step]
action = trajectory.actions|[step]
observation = trajectory.observations[step]

Immediate evaluations

torso_upright = state[’torso_upright’]
torso_height = state[’torso_height’]
horizontal_velocity = state[’horizontal velocity’]

Upright score: closer to 1 is better
upright_scores.append(torso_upright)

Height score: closer to stand height is better
height_scores.append(l - abs(torso_height - stand_height) / stand_height)

Velocity score: closer to target speed is better
velocity_scores.append(l - abs (horizontal_velocity - target_speed) /
target_speed)

Energy score: lower action magnitudes are better
energy_scores.append(l - np.linalg.norm(action) / np.sgrt(len(action)))

Holistic evaluations

if previous_state is not None:
distance_travelled = abs (state[’horizontal velocity’]) % _CONTROL_TIMESTEP
total_distance += distance_travelled

height_variation.append (torso_height)
upright_variation.append(torso_upright)

previous_state = state

Compute immediate evaluation scores
mean_upright_score = np.mean (upright_scores)
mean_height_score = np.mean (height_scores)
mean_velocity_score = np.mean(velocity_scores)
mean_energy_score = np.mean(energy_scores)

Compute holistic evaluation scores

stability_score = 1 - (np.std(height_variation) / stand_height + np.std(
upright_variation)) / 2

progress_score = total_distance / (len(trajectory) % _CONTROL_TIMESTEP «x
target_speed)

Calculate overall score with weights

final score = (WEIGHT_UPRIGHT * mean_upright_score +
WEIGHT_HEIGHT x mean_height_score +
WEIGHT_VELOCITY * mean_velocity_score +
WEIGHT_ENERGY x mean_energy_score +
WEIGHT_STABILITY * stability_score +
WEIGHT_PROGRESS * progress_score)

else:
final_score

Il
o

else:
final_score = 0
return final_score

####Evalution Function Sample 3####

def evaluate_trajectory(trajectory: ’'Trajectory’) -> float:

Evaluate the robot’s trajectory and return an overall score.

Args:
trajectory (Trajectory): The trajectory to be evaluated.

Returns:

float: The overall score of the trajectory.
nnn

Initialize score components
immediate_scores = []
total_distance = 0.0
total_effort = 0.0
last_velocity = None
smoothness_penalty = 0.0
consistency_penalty = 0.0

Define constants for evaluation thresholds and weights
TOROS_UPRIGHT_THRESHOLD = 0.8 # Close to fully upright
TOROS_HEIGHT_THRESHOLD = 1.0 # Close to the stand height
TARGET_VELOCITY = 1.0 # Target walking speed

EFFICIENCY_WEIGHT = 0.1 # Weight for efficiency in the overall score
SMOOTHNESS_WEIGHT = 0.2 # Weight for smoothness in the overall score
FALL_PENALTY = -100.0 # Penalty for falling

for step in range(len(trajectory)):
state = trajectory.states[step]
action = trajectory.actions[step]
observation = trajectory.observations|[step]

Immediate evaluation

upright_score = max (state[’torso_upright’], 0) # Prefer upright posture
height_score = max (0, 1 - abs(state[’torso_height’] - trajectory.task._STAND_HEIGHT))
speed_score = max (0, 1 - abs(state[’horizontal velocity’] - trajectory.task.

_move_speed))

immediate_score = (upright_score + height_score + speed_score) / 3
immediate_scores.append (immediate_score)

Holistic evaluation components
total_distance += state[’horizontal_velocity’] * trajectory.task.control_timestep
total_effort += np.sum(np.square (action))

if last_velocity is not None:
smoothness_penalty += np.linalg.norm(state[’velocity’] - last_velocity)
last_velocity = state[’velocity’]

Consistency in joint orientations
consistency_penalty += np.var (observation[’orientations’])

Holistic evaluation
average_immediate_score = np.mean (immediate_scores)

efficiency_score = total_distance / (total_effort + le-6) # Avoid division by zero
smoothness_score = 1 / (smoothness_penalty + le-6) # Smoothness as inverse of penalty
consistency_score = 1 / (consistency_penalty + le-6) # Consistency as inverse of penalty

final_score = (
average_immediate_score +
EFFICIENCY WEIGHT » efficiency_score +
SMOOTHNESS_WEIGHT * smoothness_score +
(1 - EFFICIENCY_WEIGHT - SMOOTHNESS_WEIGHT) = consistency_score

Penalize for falling
if trajectory.states[-1][’torso_height’] < 0.8 * trajectory.task._STAND_HEIGHT:
final_score += FALL_PENALTY

return final_score

####Evalution Function Sample 4####

def evaluate_trajectory(trajectory: Trajectory) -> float:

Evaluate the robot’s trajectory and return an overall score.

Args:
trajectory (Trajectory): The trajectory to be evaluated.

Returns:

float: The overall score of the trajectory.
nnn

Constants

TARGET_HEIGHT = trajectory.task._STAND _HEIGHT # 1.2 meters

TARGET_SPEED = trajectory.task._move_speed # Depends on the current task: 0, 1 m/s, or 8
m/s

FALL_THRESHOLD = 0.8 * TARGET_HEIGHT # Around 0.96 meters

Initialize score components
stability_score = 0
speed_score = 0
efficiency_score = 0
smoothness_score = 0
progress_score = 0
consistency_score = 0

Initialize counters

steps = len(trajectory)
distance_covered = 0
previous_velocity = None
previous_orientations = None

Immediate Evaluation
for i, (state, action, observation) in enumerate (zip(trajectory.states, trajectory.actions
, trajectory.observations)) :
Stability
torso_upright = state[’torso_upright’]
torso_height = state[’torso_height’]
stability_score += max (0, torso_upright) =* max (0, (torso_height - FALL_THRESHOLD) / (
TARGET_HEIGHT - FALL_THRESHOLD))

Speed
horizontal_velocity = state[’horizontal_velocity’]
speed_score += max (0, 1 - (horizontal_velocity - TARGET_SPEED) / TARGET_SPEED)

Efficiency
efficiency_score += 1 - np.linalg.norm(action) / np.sqgrt(3) # Normalized to [0, 1]

Progress
if i > 0:
distance_covered += horizontal_velocity * trajectory.task.control_ timestep

Smoothness (difference in orientations and velocities between consecutive steps)
if previous_orientations is not None:
orientation_diff = np.linalg.norm(state[’orientations’] - previous_orientations)
velocity_diff = np.linalg.norm(state[’velocity’] - previous_velocity)
smoothness_score += 1 / (1 + orientation_diff + velocity_diff)

previous_velocity = state[’velocity’]
previous_orientations = state[’orientations’]

Normalize immediate scores
if steps > 0:
stability_score /= steps
speed_score /= steps
efficiency_score /= steps
smoothness_score /= (steps - 1) if steps > 1 else 1

Holistic Evaluation
Progress
progress_score = distance_covered

Consistency (variation in orientations and velocities)
orientation_variation = np.var([state[’orientations’] for state in trajectory.states],
axis=0) .mean ()

velocity_variation = np.var([state[’velocity’] for state in trajectory.states], axis=0).
mean ()
consistency_score = 1 / (1 + orientation_variation + velocity_variation)

Combine scores
final_score = (

0.3 x stability_score +
speed_score +
efficiency_score +
smoothness_score +
progress_score +
consistency_score

cocoooo
R N
* ok ok ok

return final_score

def compute_reward (
self, action: npt.NDArray[Any], obs: npt.NDArray[np.float64]

) —> tuple[float, float, float, float, float, float]:
assert (
self._target_pos is not None
), "‘reset_model () must be called before ‘compute_reward() ‘."

del action
obj = obs[4:7]
tcp = self.tcp_center

tcp_to_obj = float (np.linalg.norm(obj - tcp))

tcp_to_obj_init = float (np.linalg.norm(obj - self.init_tcp))
obj_to_target = abs(self._target_pos[l] - obj[l])

tcp_closed = max (obs[3], 0.0)

near_button = reward_utils.tolerance (

tcp_to_obj,
bounds=(0, 0.05),
margin=tcp_to_obj_init,
sigmoid="1long_tail",

)

button_pressed = reward_utils.tolerance (
obj_to_target,
bounds=(0, 0.005),
margin=self._obj_to_target_init,
sigmoid="long_tail",

reward = 2 x reward_utils.hamacher_product (tcp_closed, near_button)
if tcp_to_obj <= 0.05:
reward += 8 * button_pressed

return (reward, tcp_to_obj, obs[3], obj_to_target, near_button, button_pressed)

####Evalution Function Sample 1####

def evaluate_trajectory(trajectory: Trajectory) -> fl
Weights for different components of the evaluatio
distance_weight = 0.5
y_alignment_weight = 0.3
trend_weight = 0.1
smoothness_weight = 0.1

distance_score = 0.0
y_alignment_score = 0.0
trend_score = 0.0
smoothness_score = 0.0

previous_ee_position = None
previous_joint_positions = None
previous_joint_velocities = None

if len(trajectory.states) == 25
a = trajectory.actions[0] == None
if type(a) != bool:
for i, (state, action, observation) in enumerate (zip(trajectory.states, trajectory
.actions, trajectory.observations)):
robot = state.robot

button = state.button

Immediate evaluation: Distance to button

distance = np.linalg.norm(robot.ee_position - button.position)

distance_score += 1.0 / (1.0 + distance) # Inverse to give higher scores for
smaller distances

Immediate evaluation: Y-coordinate alignment
y_alignment = 1.0 - abs (robot.ee_position[l] - button.position[1])
y_alignment_score += y_alignment

Holistic evaluation: Trend analysis
if previous_ee_position is not None:
if (robot.ee_position[l] - previous_ee_position[l]) x (button.position[1l]
- previous_ee_position[1l]) > O:
trend_score += 1.0

Holistic evaluation: Movement smoothness
if previous_joint_positions is not None and previous_joint_velocities is not
None:

joint_position_diff = np.linalg.norm(robot.joint_positions -
previous_joint_positions)

joint_velocity diff = np.linalg.norm(robot.joint_velocities -
previous_joint_velocities)

smoothness_score += 1.0 / (1.0 + joint_position_diff + Jjoint_velocity_diff

)

previous_ee_position = robot.ee_position
previous_joint_positions = robot.joint_positions
previous_joint_velocities = robot.joint_velocities

Normalize scores

num_steps = len(trajectory)

if num_steps > 0:
distance_score /= num_steps
y_alignment_score /= num_steps
trend_score /= num_steps
smoothness_score /= num_steps

Final score calculation with weights
final score = (distance_weight * distance_score +
y_alignment_weight x y_alignment_score +
trend_weight x trend_score +
smoothness_weight * smoothness_score)
else:
final_score = 0

else:
final_score = 0
return final_score

####Evalution Function Sample 2####

def evaluate_trajectory(trajectory: Trajectory) -> floa
immediate_scores = []
holistic_scores = []

Immediate evaluation weights
weight_tcp_to_obj = 0.4
weight_button_pressed = 0.6

Holistic evaluation weights
weight_success_rate = 0.5
weight_efficiency = 0.3
weight_stability = 0.2

Collect immediate scores
if len(trajectory.states) == 25
a = trajectory.actions[0] == None
if type(a) != bool:
for state, action, observation in zip(trajectory.states, trajectory.actions,
trajectory.observations) :
tcp_to_obj = np.linalg.norm(observation[4:7] — observation[:3]) # Distance
from hand to button
button_pressed = state[’ob]j_pos’][1l] <= 0.78 # Check if the button is pressed

immediate_score = (weight_tcp_to_obj % (1 - tcp_to_obj)) + (
weight_button_pressed * button_pressed)
immediate_scores.append (immediate_score)

Calculate holistic scores
total_steps = len(trajectory)

successful_steps = sum(l for state in trajectory.states if state[’obj_pos’][1l] <=
0.78)
success_rate = successful_steps / total_steps if total_steps > 0 else 0

Efficiency: Inverse of the number of steps taken to complete the task
efficiency = 1 / total_steps if total_steps > 0 else 0

Stability: Variability in the hand’s position (lower variability means higher
stability)

hand_positions = np.array([state[’hand_pos’] for state in trajectory.states])

stability = 1 / np.std(hand_positions) if np.std(hand_positions) > 0 else 0

holistic_score = (weight_success_rate x success_rate) + (weight_efficiency =
efficiency) + (weight_stability * stability)

Combine immediate and holistic scores

final score = np.mean(immediate_scores) + holistic_score
else:
final_score = 0
else:
final_score = 0

return final_score

####Evalution Function Sample 3####

def evaluate_trajectory(trajectory: Trajectory) —-> float:
Initializing variables for evaluation
total_steps = len(trajectory)
if total_steps == 0:
return 0.0

proximity_weight = 0.3
force_weight = 0.2

smoothness_weight = 0.2
completion_weight

Il
o
w

total_proximity_score = 0.0
total_force_score = 0.0
total_smoothness_score = 0.0
task_completed = False

for i in range (total_steps):
state = trajectory.states([i]
action = trajectory.actions[i]
observation = trajectory.observations[i]

Extract relevant data

ee_position = state.robot.ee_position
button_position = state.button.position
joint_velocities = state.robot.joint_velocities
goal_position = state.button.position

Calculate proximity score (closer is better)

distance_to_button = np.linalg.norm(ee_position - button_position)

proximity_score = max (0, 1 - distance_to_button) # Closer to button gives higher
score

total_proximity_score += proximity_score

Calculate force score (assume we can check the force applied in some way, here we
use placeholder)

force_applied = np.linalg.norm(action) # Assuming action contains force information
ideal_force = 1.0 # Placeholder for ideal force value
force_score = max (0, 1 - abs(force_applied - ideal_force))

total_force_score += force_score

Calculate smoothness score (lower joint velocities indicate smoother movement)
smoothness_score = max (0, 1 - np.mean(np.abs (joint_velocities)))
total_smoothness_score += smoothness_score

Check if the task is completed
if np.array_equal (ee_position, goal_position):
task_completed = True

Normalize scores

avg_proximity_score = total_proximity_score / total_steps
avg_force_score = total_force_score / total_steps
avg_smoothness_score = total_smoothness_score / total_steps
completion_score = 1.0 if task_completed else 0.0

Calculate overall score

final_ score = (proximity_weight » avg_proximity_score +
force_weight x avg_force_score +
smoothness_weight * avg_smoothness_score +

completion_weight % completion_score)

return final_score

####Evalution Function Sample 4###4#

def evaluate_trajectory(trajectory: Trajectory) —-> flo
nnwn

Evaluate the trajectory of the robot based on immediate and holistic criteria.

Parameters:

trajectory (Trajectory): The trajectory object containing states, actions, and
observations.

Returns:

float: The final score representing the quality of the trajectory.
nnn

Initialize scores
proximity_score = 0.0
action_effectiveness_score
button_press_success_score
consistency_score = 0.0
efficiency_score = 0.0
smoothness_score = 0.0

Immediate evaluation parameters
proximity_threshold = 0.05 # Threshold for proximity to the button
button_press_threshold = 0.02 # Threshold for button press success

Holistic evaluation parameters
max_steps = 25 # Maximum number of steps in the trajectory
smoothness_weight = 0.1 # Weight for smoothness in the overall score

Iterate over the trajectory
if len(trajectory.states) == 25
a = trajectory.actions[0] == None
if type(a) != 1l:
for i in range(len(trajectory)):
state = trajectory.states[i]
action = trajectory.actions[i]
observation = trajectory.observations[i]

Immediate evaluation
tcp_to_obj = np.linalg.norm(state[’hand_pos’] - state[’obj_pos’])
obj_to_target = abs (state[’obj_pos’][1] - 0.78) # Goal y-coordinate is 0.78

Proximity to the button
if tcp_to_obj <= proximity_threshold:

proximity_score += 1.0

Action effectiveness

if i > 0:
prev_state = trajectory.states[i-1]
prev_tcp_to_obj = np.linalg.norm(prev_state[’hand_pos’] - prev_statel[’
obj_pos’])

if tcp_to_obj < prev_tcp_to_obj:
action_effectiveness_score += 1.0

Button press success
if obj_to_target <= button_press_threshold:
button_press_success_score += 1.0

Holistic evaluation
total_steps = len(trajectory)

Consistency: How often the robot moves closer to the goal
for i in range(l, total_steps):
prev_state = trajectory.states[i-1]
curr_state = trajectory.states[i]
prev_tcp_to_obj = np.linalg.norm(prev_state[’hand pos’] - prev_state[’obj_pos’

1)

curr_tcp_to_obj = np.linalg.norm(curr_state[’hand_pos’] - curr_state[’obj_pos’
1)

if curr_tcp_to_obj < prev_tcp_to_obj:
consistency_score += 1.0

Efficiency: Reward quicker task completion
efficiency_score = (0, max_steps - total_steps)

Smoothness: Penalize erratic movements

for i in (2, total_steps):
prev_action = trajectory.actions[i-1]
curr_action = trajectory.actions[i]
action_diff = np.linalg.norm(curr_action - prev_action)
smoothness_score —-= smoothness_weight x action_diff

Normalize scores

total_possible_steps = max_steps - 1
proximity_score /= total_possible_steps
action_effectiveness_score /= total_possible_steps
button_press_success_score /= total_possible_steps
consistency_score /= total_possible_steps

Combine scores into a final score

final_score = (
proximity_score x 0.3 +
action_effectiveness_score x
button_press_success_score x
consistency_score = 0.1 +
efficiency_score * 0.05 +
smoothness_score = 0.05

0.2
0.3

)
else:
final_score = 0
else:
final_score = 0
return final_score

We can observe that compared to the expert-designed reward functions, the LLM-based evaluation functions cover more
than just success-related criteria, providing a more nuanced evaluation pattern. Also, as required by the prompts, the LLM-
based evaluation functions cover immediate state-action pairs as well as holistic evaluations.

For example, on the Walker task, the expert reward function is primarily focused on immediate task success, measured
through Upright Posture, which rewards the walker for keeping its torso upright, and Torso Height, which ensures the torso
height is within a certain range. On the other hand, the LL.M-based evaluation function integrates these success-related
criteria but also extends the evaluation to cover additional aspects, such as Energy Efficiency, measured by penalizing large
action magnitudes to promote energy-efficient behavior, and Stability Over Time by evaluating changes in torso height and
uprightness, ensuring stability throughout the trajectory. By incorporating broader criteria—both immediate and holistic—the
LLM-based evaluation functions provide a more comprehensive and nuanced assessment of the robot trajectories. This ensures
the walker not only completes the tasks successfully but also does so efficiently, stably, and consistently over time, leading
to potentially more robust and effective reinforcement learning outcomes.

More importantly, we observe that the evaluation functions generated from the same gpt-4o agents, exhibit diversity. This
variation manifests in several ways, such as differing task-related criteria, assorted definitions for the same criteria, and
varying priorities assigned to these criteria (e.g., different weighting schemes). Our PrefCLM capitalizes on this diversity,
leveraging the unique understanding that each LLM agent brings to the task and leading to a richer and more comprehensive
evaluation process.

APPENDIX V
THE FEEDING TASK IN THE USER STUDY

We selected the Feeding task from the Assistive Gym: A Physics Simulation Framework for Assistive Robotics [29]. In
this task, a robot arm is tasked with delivering a spoon holding food, represented as small spheres, to the mouth of a human
seated in a chair without spilling.

A. Pre-trained Robot Policy

To pre-train a robot policy, we utilized the ground-truth reward functions provided by the benchmark, which consist of
several costs and penalties to differentiate:

o Cy(s): cost for long distance from the robot’s end effector to the target assistance location (e.g., human mouth).
o C.(s): reward for successfully feeding food to the human mouth.

o C,(s): cost for high robot end effector velocities.

o Cy(s): cost for applying force away from the target assistance location.

o Chy(s): cost for applying high forces near the target.

o Cyq(s): cost for spilling food on the human.

o Cfau(s): cost for food entering the mouth at high velocities.

We selected the default weights for these criteria as in [29]. We trained the robot policy using Soft Actor-Critic (SAC)
for a total of 1.6 x 107 time steps, approximately 8 hours. SAC is also the RL training basis of PEBBLE [6], the PbRL
backbone algorithm for our PrefCLM, ensuring smooth fine-tuning with PrefCLM. After pre-training, the robot policy is
capable of basic functionality, i.e., successfully bringing the spoon close to a certain distance from the user’s mouth.

Furthermore, the Assistive Gym allows for adjusting the human shape, location of the chair, mounting of the robotic arm,
and other physical parameters, providing a good opportunity to mimic realistic settings during pre-training.

B. Fine-tuning Process

During the user study, we aimed to fine-tune the pre-trained robot policy using PrefCLM (few-shot, n=10) by incorporating
user interactive feedback and compare the resulting satisfaction and personalization against the baseline PrefEVO and pre-
trained robot policy.

Each participant first expressed their initial expectations for the Feeding Task in natural language, e.g., “I want the
robot to move carefully and slowly when feeding me." PrefCLM then generated initial evaluation functions based on these
expectations. Using the crowdsourced evaluation functions, we fine-tuned the pre-trained policy.

For each model (PrefCLM and baseline PrefEVO), we periodically (every 4 x 10% environment steps, approximately 2
hours) rolled out the learned robot policy to the physical Kinova Jaco robotic arm, for a total of three times. Each time,
participants provided interactive feedback, which was utilized to refine the evaluation functions.

Specifically, we conducted the following steps:

o Fine-tuned the pre-trained policy for 4 x 10° environment steps using the initial evaluation functions generated based
on user expectations.

« Participants interacted with the first fine-tuned policy and provided the first interactive feedback.

« PrefCLM adapted the evaluation functions based on this feedback and fine-tuned the policy again for 4 x 10% environment
steps.

o Repeated the interaction and feedback process with the second fine-tuned policy.

o PrefCLM adapted the evaluation functions once more and fine-tuned the policy again for 4 x 105 environment steps.

« Repeated the interaction and feedback process with the third fine-tuned policy.

o PrefCLM adapted the evaluation functions once more and conducted a final fine-tuning for 4 x 10% environment steps.

It is worth noting that PEBBLE, the PbRL backbone algorithm for our PrefCLM, is an off-policy PbRL algorithm. This
means that when the evaluation function is adapted and a new reward model is learned in the PbRL setting, PEBBLE can
re-label all state-action pairs from the behavior of previous robot policies and reward models in the replay buffer. This
ensures efficient use of previous experiences and accelerate the learning process.

For participants, they could choose to leave or stay during the fine-tuning process. If they decided to leave, we stored the
fine-tuned robot policy after current round of training, and resumed with the next round of interaction, interactive feedback,
evaluation function adaptations, and fine-tuning upon their return.

The final fine-tuned robot policy by PrefCLM is compared to the final fine-tuned one by PrefEVO and the pre-trained
policy, as the final interaction policy. Each participant interacted with each policy three times in a randomized sequence
and was not informed about which policy was active to prevent any bias in their responses. Following each interaction,
participants were asked to rate the robot behaviors of the three policies in terms of satisfaction, using a Likert scale ranging
from 1 (strongly disagree) to 5 (strongly agree). They were also asked to rate the level of personalization resulting from
PrefCLM and PrefEVO using the same scale.

